Изменения изотопного и элементного состава в высокотемпературных никель-водородных реакторах

А.Г. Пархомов¹, К.А. Алабин², С.Н. Андреев², С.Н. Забавин¹, А.Г. Соболев³, Т.Р. Тимербулатов¹

Аннотация—Представлены результаты анализа изотопного и элементного состава топлива и вещества около активной зоны четырех никельводородных реакторов до и после работы с наработкой избыточной энергии до 790 МДж. Достоверных изменений изотопного состава никеля и лития не обнаружено. Значительное возрастание концентрации примесей целого ряда нуклидов обнаружено не только в топливе, но и в конструкционных элементах, примыкающих к активным зонам реакторов.

После публикации отчета об испытании в Лугано высокотемпературного теплогенератора Андреа Росси [1], [2] сделано множество попыток создания аналогичных устройств [3]. В некоторых из них продемонстрировано выделение тепла, значительно превышающее затраченную электроэнергию. Избыточное тепловыделение многократно превосходит возможности химических реакций и сопоставимо с энерговыделением при ядерных реакциях, хотя и не сопровождается губительной радиацией и радиоактивностью. Но остается неясной природа этого удивительного эффекта. Важнейшее значение для прояснения природы этого эффекта имеет исследование элементных и изотопных изменений в процессе работы реакторов. В этой статье представлена информация о результатах анализа изменений в топливе и в конструкционных материалах, происшедших в нескольких никель-водородных реакторах, созданных нашим коллективом.

I. Оценка возможных изменений изотопного состава топлива

Сделаем оценку возможных изменений изотопного состава топлива, исходя из предположения, что избыточное тепловыделение происходит в результате ядерных трансмутаций в соответствии с законом сохранения энергии. Например, в никеле, содержащем водород, в принципе, возможно протекание ядерной реакции

$${}^{58}Ni + {}^{1}H + 2e^{-} \rightarrow {}^{59}Co + 10,32M \Im B$$
 (1)

¹ОКЛ КИТ, Москва, alexparh@mail.ru. ²ИОФ РАН, Москва. ³ФИАН РАН, Москва. Так как 1 МДж = $6,3\cdot10^{18}$ МэВ, для выделения энергии 1 МДж в результате протекания этой реакции расходуется около $6\cdot10^{17}$ ядер никеля (0,00006 г) и образуется столько же кобальта. Никель-водородные реакторы обычно содержат около 1 г топлива. Обнаружить 0,00006 г кобальта в 1 г никеля (0,006%), используя современные технологии, вполне возможно.

Сложнее обнаружить изменение соотношения изотопов. Обычные масс - спектральные анализаторы позволяют улавливать изменения соотношений изотопов в элементах порядка 1%. Обнаружить изменение порядка 0,01%, происходящее при выделении в 1 г топлива 1 МДж в результате протекания реакции (1), нереально. Для снижения содержания на 1% изотопа ⁵⁸Ni необходима наработка избыточной энергии порядка 100 МДж.

Если топливо содержит литий, возможна ядерная реакция

$$^{7}Li + {}^{1}H \to 2^{4}He + 17,35M\mathfrak{B}$$
 (2)

В результате этой реакции в смеси изотопов лития (природная смесь содержит 92,6% ⁷Li и 7,4% ⁶Li) снижается содержание ⁷Li и, соответственно, возрастает содержание ⁶Li. Предположим, что все избыточное энерговыделение связано с реакцией (2). Для выделения 1 МДж требуется $4\cdot10^{17}$ ядер ⁷Li ($4,2\cdot10^{-6}$ г). Типичный реактор с топливной смесью никель - алюмогидрид лития содержит около 0,02 г ⁷Li. Поэтому при выделении 1МДж удаляется липь 0,02% ⁷Li. Обнаружить такое изменение практически невозможно. При выделении 1000 МДж удаляется 20% ⁷Li. Это приводит к возрастанию содержания ⁶Li с 7.4 до 10%. Такое изменение заметить вполне возможно, хотя и не просто из-за малой массы доступного для анализа вещества.

Таким образом, появление изотопов, отсутствующих в исходном топливе, может быть обнаружено при наработках избыточной энергии порядка 1МДж на грамм топлива. Для надежного выявления изменений соотношений изотопов в элементах, изначально входящих в состав топлива, требуются наработки избыточной энергии выше 100 МДж/г. Закономерно, что тщатель-

⊤жФНН

Журнал Формирующихся Направлений Науки номер 15-16(5), стр. 97-104, 2017 ©Авторы, 2017 статья получена: 01.06.2017 статья принята к публикации: 05.06.2017 http://www.unconv-science.org/n15/parkhomov/ ©Association of Unconventional Science, 2017 ный анализ топлива реактора GS3, созданного Аланом Голдвотером [3], [4] не обнаружил заметных изотопных изменений, так как наработка избыточной энергии в нем была около 50 МДж/г. Наработка избыточной энергии в высокотемпературном теплогенераторе Росси, согласно [1], составила 5800 МДж/г. Этого вполне достаточно для радикальных изменений изотопного состава как никеля, так и лития. Далее мы изложим результаты анализа изотопных изменений в топливе и в конструкционных материалах, происшедших в нескольких никель-водородных реакторах, созданных в нашей лаборатории.

ΙΙ. ΡΕΑΚΤΟΡ ΑΠ2

Реактор АП2 [5] был загружен топливной смесью 640 мг Ni + 60 мг LiAlH4. Он работал 16-22 марта 2015, произведя около 150 МДж избыточного тепла.

Рис. 1. Реактор АП2.

Анализы топлива до и после работы в реакторе сделаны несколькими методами в нескольких организациях. Анализ элементного состава с использованием электронного сканирующего микроскопа сделан в ИОФ РАН и ВНИИЭФ (г. Саров). В топливной смеси до загрузки в реактор уверенно различаются две фракции: кристаллы и пещеристые гранулы. В кристаллах обнаружены в основном Al, O и Cl. Гранулы состоят из никеля с небольшой примесью железа, алюминия и кислорода. В топливе после работы в реакторе видны оплавленные и шлаковидные структуры. Оплавленные структуры содержат в основном никель с примесью Fe, Al, Cr, Mn, Si, O. Шлаковидные структуры состоят в основном из Al и O.

Элементный анализ с использованием лазерного атомно-эмиссионного спектрометра сделан в ИОНХ РАН. Он показал, что после работы содержание К и Сг в топливе выросло в десятки раз. Многократно увеличилось содержание Si, Na, Mg, Ca, Ti, V. Снизилось содержание Ni, Cl, Mn, Cu, Zn. Таким образом, оба метода показывают появление в топливе после пребывания в реакторе ряда элементов, которые в исходном топливе практически отсутствуют. Следует отметить, что этот метод анализа, как и анализ с применением сканирующего электронного микроскопа, дает информацию об атомном составе лишь на поверхности исследуемого вещества. Анализ изотопного состава топлива до и после работы в реакторе АП2 методом ICP-MS, дающем информацию об изотопном составе в среднем по образцу, сделан в ГеоХи РАН. После работы в реакторе сильно снизилось общее содержание алюминия и лития, причем немного возросло относительное содержание ⁶Li. Но это увеличение (на 0,5%) лежит в пределах возможной ошибки измерения. Достоверных изменений изотопного состава никеля не обнаружено.

Анализ топлива реактора АП2 методом ICP-MS был сделаны также в университете Uppsala (Швеция). Результаты этих измерений показаны в таблице I.

Таблица I Соотношение изотопов лития и никеля в топливе реактора АП2, определенное методом ICP-MS в университете Uppsala (Швеция).

%	⁶ Li	⁷ Li	⁵⁸ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶⁴ Ni
До	7,4	$92,\!6$	68,1	26,2	1,14	3,63	0,93
После	15,4	$84,\!6$	63,4	27,6	1,3	5,2	2,5
Природа	7,6	92,4	68,0	26,2	$1,\!14$	3,71	0,93

По данным этих измерений, относительное содержание ⁶Li в образце отработавшего топлива возросло более чем в 2 раза. Вполне заметные изменения произошли и в соотношении изотопов никеля. Эти результаты отличаются от результатов, полученных в ГеоХи РАН. Различие, возможно, связано с неравномерностью изменений по объему образца. Следует заметить, что достоверные результаты для лития получить сложно из-за очень маленькой концентрации лития в отработавшем топливе (<0,01%).

III. РЕАКТОР 'ПРОТОК 6'

В экспериментах с устройствами, претендующими на получение тепла в количестве, превышающем потребленную энергию, очень важно измерять выделенное тепло с максимально возможной точностью. Учитывая это, в нашей лаборатории проведена серия экспериментов с использованием калориметра с проточной водой, позволяющего измерять мощность тепловыделения с погрешностью меньше 3%. Один из испытанных в комплексе с этим калориметром реакторов 'Проток-6' непрерывно проработал с 11 апреля до 29 мая 2016 г с выделением избыточной тепловой мощности от 20 до 65 Вт. Интегральная наработка избыточной энергии на этом реакторе около 100 МДж [6]. В отличие от предыдущих конструкций, имеющих внешний нагреватель, этот реактор имел нагреватель из вольфрамового провода, расположенный внутри герметичной керамической трубы. Топливо (1,8 г порошка никеля, смешанного с 0,2 г алюмогидрида лития) находилось в керамической трубке, обвитой вольфрамовым нагревателем. Трубка с нагревателем находилась в герметично закупоренной керамической трубе большего диаметра.

Рис. 2. Схема реактора 'Проток 6'.

Рис. 3. Реактор 'Проток 6' после вскрытия.

После окончания эксперимента реактор был вскрыт (рис. 3). Было обнаружено, что внутренняя поверхность внешней трубки вблизи нагревателя покрылась серым бугристым стекловидным налетом. Внешний вид внутренней трубки и обмотки нагревателя сохранился. Но внутри произошли значительные изменения: образовалась стекловидная масса с вкраплениями металлических шариков размером около 0,1 мм. Несколько шариков имели диаметр до 1 мм. На концах засыпки топливо приобрело вид спекшейся массы, содержащей мелкие металлические шарики. Кроме того, из внутренней трубки высыпался порошок. При помощи магнита из этого порошка была извлечена фракция, состоящая из нитей поперечным размером около 0,1 мм.

Несколько образцов были подвергнуты массспектроскопическому анализу в ГеоХи РАН методом ICP-MS. Были исследованы: исходная топливная смесь, металлический шарик из отработавшего топлива, топливо на краю активной зоны, вещество, накопившееся между внутренней И наружной трубками, налет на внутренней поверхности наружной трубки. Ввиду большого объема полученной информации нет возможности представить ee полностью. Частично результаты анализа показаны в таблице II. В ней, помимо данных для образцов, извлеченных из реактора после его работы, дана информация о содержании изотопов в топливе, а также в керамике и вольфрамовом проводе до работы в реакторе. Эта информация важна, так как появление новых элементов может быть связано не с трансмутациями, а с миграцией из конструкционных материалов, вполне возможной при высоких температурах. К сожалению, метод ICP-MS не позволяет определять содержание изотопов с массами 1-5, 12-22, 32, в том числе, изотопы углерода, кислорода, азота, фтора, серы.

Очевидным результатом является возрастание содержания многих нуклидов по сравнению с их содержанием в исходном топливе и конструкционных материалах. Исключением является литий (снижение примерно в 100 раз) и алюминий в топливе (снижение больше чем в 10 раз). Отметим особенно сильное возрастание присутствия бора, железа, галлия, церия, циркония, стронция, висмута. Наиболее значительные аномалии обнаружены в порошке, накопившемся в пространстве между внутренней и наружными трубками. Особенно много появилось ¹⁴⁰Се: 6,3% (в исходном топливе <0,0001%). Значительное количество вольфрама, обнаруженное в образцах после пребывания в реакторе, вероятно, связано с миграцией этого элемента из раскаленной вольфрамовой спирали.

Большой интерес представляет исследование возможных изменений изотопного состава лития и нике-

Таблица II Относительное содержание изотопов (атомные %) в топливе и около активной зоны реактора 'Проток-6' до и после работы реактора. Показаны изотопы с содержанием >0,1%.

ОПЛИВО ВСКОЛОС И провод И провод 7Li 0.703 27Ma 5.37 23 Na 1.90 24 Mg 1.61 24 Mg 0.25 24 Mg 0.12 25 Mg 0.23 27 Al 0.31 27 Al 3.63 26 Mg 0.28 28 Si 1.88 29 Si 1.04 27 Al 65.05 31 P 0.18 39K 1.60 29 Si 1.55 39 K 6.00 44 Ca 0.22 39 K 8.36 45 Sc 0.80 51 V 0.68 44 Ca 0.94 54 Cr 0.40 53 Cr 0.22 45 Sc 0.61 183 W 9.52 56 Fe 0.99 54 Cr 0.41 133 W 9.52 57 Fe,Ni 1.53 39 V 0.25 200 Hg 0.20 60 Ni 1.10 89 Y 0.25 200 Hg 0.21 66 Zn 0.12 208 Pb 0.29 138			До	рабо	оты в р	реактор	e	17		-
1.1 0,44 2 ¹ Na 7,03 ^{-7}Na 5,34 2 ² Mg 0,12 2 ⁵ Mg 0,23 2 ⁷ Al 0,31 2 ⁷ Al 3,63 2 ⁶ Mg 0,28 2 ⁹ Si 1,88 2 ⁹ Si 1,04 2 ⁷ Al 65,05 3 ¹ P 0,18 3 ⁹ K 1,60 2 ⁹ Si 1,55 3 ⁹ K 6,09 ⁴⁴ Ca 0,28 3 ¹ P 0,16 4 ⁴ Ca 1,06 4 ⁵ Sc 0,22 4 ⁵ Sc 0,61 1 ⁵ SF 0,46 5 ³ Cr 0,22 4 ⁵ Sc 0,15 1 ⁵⁶ Fe 0,46 5 ⁵ Mn 0,17 4 ⁸ T ₁ Ca 0,15 1 ⁵⁶ W,08 21,29 6 ¹ Ni 1,10 8 ⁹ Y 0,22 20 ¹ Hg 0,21 6 ² Ni 3,63 9 ⁰ Zr 0,44 20 ² Hg 0,21 6 ⁴ Ni,Zn 1,24 9 ² Sr,Mo 0,16 1 ⁹ Br 0,21 6 ² Ni 3,63 9 ⁰ Zr 0,42 2 ⁰ Hg 0,21 <td>Топлив</td> <td>о исход</td> <td>ное</td> <td>23 \</td> <td>Керам</td> <td>ика</td> <td>23 N</td> <td>w про r</td> <td>вод</td> <td>-</td>	Топлив	о исход	ное	23 \	Керам	ика	23 N	w про r	вод	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	' L1 23 M	0,	74	24 N	la	7,03	24	a	5,37	
	²⁰ Na	1,	90	24 N 25 N	/lg	1,61	24 N	lg	0,25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁴ Mg	0,	12	20 N	/lg	0,23	21 A	.1	0,31	
^{29}Si 1,04 ^{24}Al 65,05 ^{31}P 0,18 ^{30}K 6,09 ^{44}Ca 0,22 ^{39}K 8,36 ^{45}Cc 0,80 ^{51}V 0,68 ^{44}Ca 0,94 ^{54}Cr 0,40 ^{54}Cr 0,40 ^{55}V 0,68 ^{44}Ca 0,94 ^{54}Cr 0,41 ^{183}W 9,52 ^{55}Fe 0,99 ^{54}Cr 0,41 ^{183}W 21,48 ^{60}Ni 23,58 $^{58}Fe,Ni$ 0,15 $^{186}W,Os$ 21,29 ^{61}Ni 1,10 ^{99}Zr 0,44 ^{202}Hg 0,21 $^{64}Ni,Zn$ 1,24 $^{92}Sr,Mo$ 0,16 ^{198}Hg 0,21 ^{66}Zn 0,12 $^{128}Ba,Lc$ 0,33 ^{79}Br 0,32 ^{206}Pb 0,32 ^{207}Pb 0,25 ^{206}Pb 0,32 ^{207}Pb 0,25 ^{208}Pb 0,69 ^{75}As 0,43 ^{208}Pb <t< td=""><td>²⁷ Al</td><td>3,</td><td>63</td><td>20 N</td><td>/lg</td><td>0,28</td><td>29S</td><td>i</td><td>1,88</td><td></td></t<>	²⁷ Al	3,	63	20 N	/lg	0,28	29S	i	1,88	
	²⁹ Si	1,	04	21 A	1	65,05	31 F	•	$0,\!18$	
44 Са 0.28 31 P 0.16 44 Са 1.06 45 Sc 0.22 39K 8.36 45 Cc 0.80 51 V 0.68 44 Ca 0.94 54 Cr 0.40 55 Mn 0.17 48 Ti, Ca 0.15 182 W 18,50 56 Fe 0.99 54 Cr 0.41 183 W 9,52 61Ni 1.10 89 Y 0.25 200 Hg 0.20 62Ni 3.63 90 Zr 0.44 202 Hg 0.21 64Ni,Zn 1.24 92 Sr,Mo 0.16 198 Hg 0.21 66Zn 0.12 138 Ba,Ce 0.33 79 Br 0.13 206 Pb 0.29 138 Br, 0.12 208 Pb 0.69 0.13 81 Br 0.12 208 Pb 0.69 148 Ca, 0.69 0.15 44 Mg 0.82 75 Se 0.17 206 Pb 0.32 207 Pb 0.25 207 Pb 0.25 0.25 2108 Pb 0.69 <td>³⁹K</td> <td>1,</td> <td>60</td> <td>²⁹S</td> <td>i</td> <td>1,55</td> <td>³⁹F</td> <td></td> <td>6,09</td> <td></td>	³⁹ K	1,	60	²⁹ S	i	1,55	³⁹ F		6,09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 Ca	0,	28	³¹ F)	0,16	44C	la	1,06	
	^{45}Sc	0,	22	39 k	ζ.	8,36	^{45}S	с	$0,\!80$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{51}V	0,	68	^{44}C	Ca	0,94	54	r	$0,\!40$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	^{53}Cr	0,	22	^{45}S	c	$0,\!61$	^{56}F	e	10,46	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{55}Mn	0,	17	48 T	Ti,Ca	0,15	182	W	18,50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 Fe	0.	99	54C	Cr	0.41	183	W	9,52	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58 Fe.Ni	55	5.91	^{56}F	'e	10.00	184	W	21.48	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁶⁰ Ni	25	8.58	58F	e Ni	0.15	186	W.Os	21.29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 Ni	1	10	89	7	0.25	200	Ησ	0.20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62 N;	1, 2	63	907	r	0.44	202	Ha	0,20 0.21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64 N; 7n	1	00 94	920	r Mo	0,44	198	Ha	0.21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 Z.	, 	24 16	940	n Ma	0,10		iig	0,21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 Z	0,	10	138	D. C.	0,10				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zn 79D	0,	12	206	Ba,Ce	0,33				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	' ' Br	0,	13	200	Pb	0,13				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁰¹ Br	0,	12	200	Pb	0,29				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	¹³⁰ Ba,L	a,Ce 0,	25							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	²⁰⁶ Pb	0,	32							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	207 Pb	0,	25							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	208 Pb	0,	69							_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Посл	te pa	боты в	в реакто	ope			_
капля в отрабо- тавшем топливе поверхн. и наружной трубками наружн. керам. трубки 11B 0,19 23Na 1,56 11B 0,44 75 As 0,43 23Na 5,07 24 Mg 1,16 23Na 14,70 76 Ge,Se 0,16 24 Mg 0,21 25 Mg 0,15 24 Mg 0,82 77 Se 0,17 27 Al 0,22 26 Mg 0,17 26 Mg 0,15 79 Br 0,97 29 Si 3,94 27 Al 0,23 27 Al 0,92 81 Br 1,03 31P 0,14 29 Si 0,77 29 Si 9,37 90 Zr 0,16 39 K 3,51 39 K 0,86 31 P 0,32 115 In,Sn 0,26 43 Ca 0,14 44 Ca 0,71 39 K 9,89 120 Sn,Te 0,12 44 Ca 1,08 45 Sc 0,24 43 Ca 0,35 127 I 0,15 55 C 0,91 51 V 0,10 44 Ca 2,15 138 Ba,La,Ce0,36 51 V 1,56 52 Cr 0,57 45 Sc 1,95 140 Ce 6,54 52 Cr 0,14 53 Cr 0,10 48 Ti,Ca0,13 142 Ce,Nd 0,85 53 Cr 0,51 54 Cr 1,17 51 V 6,08 182 W 3,50 54 Cr 0,46 56 Fe 19,10 52 Cr 0,48 183 W 1,77 55 Mn 0,14 57 Fe 0,45 53 Cr 2,07 184 W,Os 3,82 57 Fe 0,18 59 Co 0,40 55 Mn 0,28 206 Pb 0,21 58 Fe,Ni 45,07 60 Ni 13,93 56 Fe 6,48 207 Pb 0,19 60 Ni 19,81 61 Ni 0,68 57 Fe 0,18 208 Pb 0,49 61 Ni 0,86 62 Ni 2,10 58 Fe,Ni 8,25 62 Ni 2,97 64 Ni,Zn 5,06 60 Ni 3,30 63 Cu 0,14 66 Zn 2,88 61 Ni 0,15 64 Ni,Zn 1,62 67 Zn 0,47 62 Ni 0,54 66 Zn 0,55 68 Cn 0,10 64 Ni,Zn 1,48 75 As 0,15 115 In,Sn 0,13 66 Zn 0,81 79 Br 0,35 140 Ce 0,37 67 Zn 0,15 81 Br 0,36 182 W 2,81 68 Zn 0,63 138 Ba,La,Ce0,14 183 W 1,54 184 W,Os 0,12 184 W,Os 3,52 208 Pb 0,17 186 W,Os 3,22	Металличе	еская	H	алет	на	Ben	цеств	э, нак	опившее	еся
Тавшем топливе поверхн. наружн. керам. трубки и наружной трубками 11B 0,19 2^{3} Na 1,56 11B 0,44 75 As 0,43 2 ³ Na 5,07 2^{4} Mg 1,16 2^{3} Na 14,70 76 Ge,Se 0,16 2^{4} Mg 0,22 2^{6} Mg 0,17 2^{6} Mg 0,15 79 Br 0,97 2^{9} Si 3,94 2^{7} Al 0,22 2^{7} Ml 0,92 81 Br 1,03 3^{1} P 0,14 2^{9} Si 0,37 90 Zr 0,16 4^{4} Ca 0,71 3^{9} K 9,89 120 Sn,Te 0,12 4^{4} Ca 0,71 3^{9} K 9,89 120 Sn,Te 0,12 4^{4} Ca 0,71 3^{9} K 9,89 120 Sn,Te 0,12 4^{4} Ca 0,71 3^{9} K 9,89 120 Sn,Te 0,12 4^{4} Ca 0,71 5^{7} Ko 0,43 5^{3} Cr 0,51 5^{4} Cr 0,51 $5^$	капля в от	pa6o-	BH	утре	HH.	1	межд	у внут	гренней	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	тавшем то	пливе	П	зверу	CH.	И	наруз	кной '	грубкам	И
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			H	аруж	сн.					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ł	серам	Л.					
	11_		T	рубк	си	11-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹ B	0,19	²³ N	a	1,56	¹¹ B	0,44	15	As	0,43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	²³ Na	5,07	²⁴ M	g	1,16	²³ Na	14,7	0 100	Ge,Se	0,16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{24}Mg	0,21	^{25}M	g	$0,\!15$	^{24}Mg	0,82	77 5	Se	0,17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{27}Al	0,22	^{26}M	g	0,17	^{26}Mg	0,15	⁷⁹ I	Br	0,97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁹ Si	3,94	^{27}A	1	0,23	^{27}Al	0,92	⁸¹]	Br	1,03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{31}P$	0,14	29 Si		0,77	29 Si	9,37	907	Zr	0,16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{39}K	3,51	^{39}K		0,86	^{31}P	0,32	115	In,Sn	0,26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{43}Ca	0,14	^{44}C	a	0,71	39 K	9,89	120	Sn,Te	0,12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 Ca	1.08	^{45}Sc		0.24	43 Ca	0.35	127	Ί	0.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{45}Sc	0.91	^{51}V		0.10	^{44}Ca	2.15	138	Ba.La.C	Ce0.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{51}V	1.56	^{52}C	r	0.57	^{45}Sc	1.95	140	Ce	6.54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^{52}Cr	0.14	^{53}C	r	0.10	⁴⁸ Ti (la0 13	142	Ce Nd	0.85
	53Cr	0,11 0.51	54C	r	1.17	51_{V}	6 08	182	w	3 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54Cr	0.46	56 F.	-	19 10	52Cr	0.49	183	W	1 77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55Mn	0,40	57 E	- -	0.45	53Cr	2.07	184	WOs	4.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56Fo	7 96	58 F.	N	29.21	54 C.	2,07	186	W Oc	300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57 E.	1,50	590	3,1NI -	0.40	55 M	0,01	206	W,OS	0.01
	58 F. N.	0,18	60 N	0 •	0,40	56 D	0,28	207	PD DI	0,21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁶⁰ Fe,N1	45,07	61 N	1	13,93	57 Fe	6,48	205	PD	0,19
	61 N1	19,81	62 N	1	0,68	Fe	0,18	200	Pb	0,49
	⁰¹ N1	0,86	02N	1	2,10	Jo Fe,N	1 8,25			
	⁰² Ni	2,97	⁰⁴ N	ı,Zn	5,06	^{oo} Ni	3,30			
	⁰³ Cu	0,14	06 Z	n	2,88	^{o1} Ni	0,15			
	⁶⁴ Ni,Zn	$1,\!62$	67 Zi	n	$0,\!47$	⁶² Ni	0,54	:		
	66 Zn	0,52	68 Zi	n	2,02	^{63}Cu	0,17			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68 Zn	0,40	88 Sı	•	0,11	⁶⁴ Ni,Z	n1,48			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{75}As	0,15	^{115}I	n,Sn	0,13	66 Zn	0,81			
	$^{79}\mathrm{Br}$	0,35	140(Ce	0,37	$^{67}\mathrm{Zn}$	0.15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{81}\mathrm{Br}$	0,36	182	N	2,81	68 Zn	0.63			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹³⁸ Ba.La.C	e0.14	183	N	1.54		- ,00			
208 Pb 0,17 186 W,Os 3,24	$^{184}W.Os$	0.12	184_{1}	N.Os	3.52					
	²⁰⁸ Pb	0,17	186	N,Os	3,24					

ля. К сожалению, очень низкое содержание лития в образцах после пребывания в работающем реакторе не позволило сделать надежные измерения. Результаты, полученные для никеля, представлены в таблице III. Так как данные по ⁶⁴Ni ненадежны из-за неконтролируемой добавки ⁶⁴Zn, при составлении таблицы для доли ⁶⁴Ni было принято значение из справочника [7]. Так как эта доля мала, такое допущение может изменить доли остальных изотопов лишь незначительно.

Таблица III Соотношение изотопов никеля в топливе и около активной зоны реактора 'Проток-6' до и после работы реактора.

%	⁵⁸ Ni	60 Ni	⁶¹ Ni	⁶² Ni	⁶⁴ Ni
Топливо	65,78	27,74	$1,\!29$	4,28	0,91
исходное					
Металлическая	65,00	28,57	$1,\!24$	4,29	0,91
капля	05 F.O.	07.00	1.07	1.00	0.01
Топливо на	65,58	27,88	1,27	4,36	0,91
краю	65 99	00.10	1.97	4.04	0.01
Налет на кера-	65,32	28,16	1,37	4,24	0,91
мике	CC 74	00.71	1.00	4 41	0.01
прошок меж-	00,74	20,71	1,25	4,41	0,91
ду трубками	69 97	96-1	1 1 9	2 50	0.01
природное со-	08,27	20,1	1,15	3,09	0,91
отношение					

Видно, что данные по разным исследованным образцам несколько отличаются от природного соотношения [7], но между собой различаются незначительно. Заметного увеличения доли ⁶²Ni за счет снижения доли остальных изотопов, обнаруженного в эксперименте в Лугано [1], [2], нет ни в одном из исследованных образцов. Возможно, что незаметность эффекта связана с ₁₃ тем, что наработка избыточной энергии в Лугано была в 60 раз больше, чем в описываемом реакторе.

IV. PEAKTOP BB3

Реактор ВВЗ отличается от реактора 'Проток 6' иной конструкцией нагревателя и отсутствием калориметра. В качестве топлива была использована смесь порошка никеля с алюмогидридом лития массой 1,5 г. В топливе находились кусочки вольфрамового провода общей массой 0,77 г. Реактор работал с 14 июня до 24 июля 2016 г., производя избыточную мощность до 330 Вт. Всего выработано 790 МДж избыточного тепла.

После окончания работы реактора из него было извлечено отработавшее топливо, имевшее вид каплевидного слитка. В ГеоХи РАН был сделан его анализ методом ICP-MS, причем отдельно делались анализы поверхностного и более глубокого слоев. Частично результаты анализа показаны в таблице IV. В ней, помимо данных для образцов, извлеченных из реактора после его работы, дана информация о содержании изотопов в исходном топливе, включая внедренные в него вольфрамовые проволочки.

Видно, что изотопный состав топлива в результате пребывания в реакторе заметно изменился. Особенно сильно возросло содержание бора, меди, церия, серебра.

Рис. 4. Реактор ВВЗ и извлеченное из него отработавшее топливо.

Таблица IV Содержание нуклидов (атомные %) в топливе реактора 'BB3' до и после работы реактора. Показаны изотопы с содержанием > 0,1%.

До работ	После работы в реакторе						
в реактор	ре		Повер	Более глубо-			
Топливо)					кое расть	орение
исходно	е						
²³ Na	2,61	^{10}B	$0,\!15$	^{75}As	$0,\!17$	^{10}B	$0,\!14$
^{24}Mg	0,15	^{11}B	0,67	$^{79}\mathrm{Br}$	0,11	^{11}B	0,66
$^{27}\mathrm{Al}$	2,93	^{24}Mg	1,50	^{81}Br	0,21	23 Na	3,72
²⁹ Si	1,22	^{25}Mg	0,12	88 Sr	0,23	^{27}Al	1,02
^{39}K	2,52	^{26}Mg	0,27	90 Zr	0,20	^{28}Si	0,25
44 Ca	0,44	^{27}Al	1,14	^{107}Ag	1,13	^{51}V	2,14
^{45}Sc	0,34	^{28}Si	0,54	^{109}Ag	2,01	^{52}Cr	0,30
^{51}V	0,55	^{44}Ca	0,16	^{127}I	0,43	^{53}Cr	0,73
^{53}Cr	0,18	^{45}Sc	0,18	140 Ce	0,72	^{54}Cr	0,21
^{55}Mn	0,14	^{51}V	2,41	^{182}W	3,34	56 Fe	2,55
56 Fe	2,92	^{52}Cr	0,31	^{183}W	1,61	⁵⁸ Fe,Ni	44,47
⁵⁸ Fe,Ni	45,09	^{53}Cr	0,81	$^{184}W,Os$	3,39	⁶⁰ Ni	18,23
⁶⁰ Ni	19,01	56 Fe	0,42	185 Re	0,26	⁶¹ Ni	0,87
⁶¹ Ni	0,88	⁵⁸ Fe,Ni	46,08	$^{186}W,Os$	2,91	⁶² Ni	2,83
⁶² Ni	2,93	⁶⁰ Ni	19,34	187 Re,Os	0,60	⁶⁴ Ni,Zn	0,87
⁶⁴ Ni,Zn	1,00	⁶¹ Ni	0,96	206 Pb	0,18	^{75}As	0,12
⁶⁶ Zn	0,13	⁶² Ni	3,02	$^{207}\mathrm{Pb}$	0,13	$^{79}\mathrm{Br}$	0,19
68 Zn	0,10	^{63}Cu	0,39	208 Pb	0,34	$^{81}\mathrm{Br}$	0,19
$^{79}\mathrm{Br}$	0,10	⁶⁴ Ni,Zn	1,31			$^{90}\mathrm{Zr}$	0,39
7 Li	0,60	^{65}Cu	0,16			92 Sr,Mo	0,14
$^{81}\mathrm{Br}$	0,10	66 Zn	0,37			94 Sr,Mo	0,16
¹³⁸ Ba,La,Ce	0,20	68 Zn	0,20			^{107}Ag	1.37
^{182}W	3,73		,			^{109}Ag	1.39
^{183}W	1,92					140 Ce	0,78
^{184}W	4,33					142 Ce,Nd	0,10
186 W.Os	4.29					^{182}W	3.49
206 Pb	0.26					^{183}W	1.90
207 Pb	0.20					$^{184}W.Os$	4.17
208 Pb	0.56					185 Re	0.38
	-,					¹⁸⁶ W.Os	3.72
						¹⁸⁷ Re.Os	0.60
						²⁰⁸ Ph	0.17

Таблица V Соотношение изотопов никеля в топливе BB3 до и после работы реактора.

%	⁵⁸ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶⁴ Ni
Топливо	65,93	27,98	1,19	$3,\!98$	0,91
исходное Поверхность	65,79	$27,\!61$	1,37	4,31	$0,\!91$
топлива Глубокое рас-	66,36	27,20	1,29	4,23	0,91
творение Природа	68,27	26,10	$1,\!13$	$3,\!59$	0,91

Так же, как и в вышеописанных реакторах, приведенные в таблице V данные, хотя и несколько отличаются от природного соотношения, между собой различаются незначительно.

V. PEAKTOP KB3

Реактор КВЗ работал с 20 декабря 2016 г до 31 января 2017 г. с избыточной мощностью 100-200 Вт. Интегральная наработка избыточного тепловыделения около 400 МДж. Главное отличие его от предшествующих реакторов заключалось в том, что он был загружен порошком никеля массой 1,8 г без примеси алюмогидрида лития. Насыщение водородом осуществлялось путем выдерживания в газообразном водороде. Кроме того, в отличие от вышеописанных реакторов, он имел не керамическую, а кварцевую внешнюю трубу. Нагреватель был сделан не из чистого вольфрама, а из сплава вольфрам-рений.

Рис. 5. Реактор КВЗ в начале работы.

Рис. 6. Реактор КВЗ, вскрытый после окончания работы.

Методом ICP-MS в ГеоХи РАН были исследованы: топливо и конструкционные материалы до работы в реакторе, а также топливо в центральной зоне и вблизи края, порошок из пространства между внутренней и внешней трубками, конструкционные материалы после работы в реакторе. Полученные результаты частично показаны в таблице VI.

Таблица VI Содержание нуклидов (атомные %) в топливе и около активной зоны реактора KB3 до и после работы реактора. Показаны изотопы с содержанием > 0,1%.

	До работы в реакторе									
Топливо исх	одное	Керамі	ика	Прог	зод н	агревателя				
²³ Na	0,33	^{27}Al	88,15	²³ Na	Ļ	0,47				
^{39}K	0,38	23 Na	1,98	²⁹ Si		0,27				
56 Fe	0,45	^{24}Mg	0,82	^{39}K		0,40				
⁵⁸ Fe, Ni	64,49	^{25}Mg	0,12	^{44}Ca	,	0,12				
⁶⁰ Ni	27,63	^{26}Mg	0,14	56 Fe		0,21				
⁶¹ Ni	1,18	29 Si	0,37	58 Fe	Ni	0,12				
⁶² Ni	3,88	³⁹ K	2,10	^{182}W	7	20,24				
⁶⁴ Ni,Zn	1,21	^{44}Ca	0,21	^{183}W	7	11,02				
,	,	47 Ti	0,88	^{184}W	/,Os	24,39				
		48 Ti,Ca	0,18	^{185}R	e	6,97				
		^{54}Cr	0.14	^{186}W	/.Os	22,23				
		56 Fe	3.17	^{187}R	e.Os	11,85				
		⁵⁸ Fe,Ni	0.28	$^{198}{ m H}$	g.Pt	0,12				
		⁶⁰ Ni	0.11	$^{200}{ m H}$	g	0.14				
		^{89}Y	0.13	$^{202}{ m H}$	g	0,13				
		138 Ba,Ce	0,17	^{208}P	b	0,18				
После работы в реакторе										
Отработав-		Керами	ика		Be	щество, нако-				
шее топливо					пин	вшееся между				
HOUTDONLING	1				DUV	тронной и но				

шее топ.	ливо					пившееся м	іежду
централ	ьная					внутренней	и на-
зона	ı					ружной тру	бками
23 Na	$0,\!13$	^{11}B	$0,\!13$	64 Ni,Zn	0,22	23 Na	5,53
^{31}P	0,11	23 Na	$15,\!61$	66 Zn	0,11	^{24}Mg	0,50
^{39}K	$0,\!14$	^{24}Mg	1,06	76 Ge,Se	0,20	27 Al	0,32
56 Fe	0,23	^{25}Mg	0,13	88 Sr	0,21	²⁹ Si	1,42
⁵⁸ Fe,Ni	65,39	^{26}Mg	0,24	^{89}Y	0,22	${}^{31}P$	0,16
⁶⁰ Ni	26,15	^{27}Al	6,05	90 Zr	0,42	^{39}K	6,93
⁶¹ Ni	1,18	29 Si	4,26	92 Sr,Mo	0,22	44 Ca	0,88
⁶² Ni	3,99	^{39}K	15,26	94 Sr,Mo	0,17	^{45}Sc	0,82
^{63}Cu	0,84	43 Ca	0,26	^{109}Ag	0,10	^{54}Cr	0,26
⁶⁴ Ni,Zn	1,14	44 Ca	3,15	^{127}I	0,16	56 Fe	7,04
^{65}Cu	0,42	^{45}Sc	2,04	138 Ba,Ce	e0,39	⁵⁸ Fe,Ni	1,80
		⁴⁸ Ti,Ca	0,23	^{182}W	4,32	⁶⁰ Ni	0,74
		^{51}V	0,22	^{183}W	2,35	⁶² Ni	0,10
		$^{54}\mathrm{Cr}$	0,96	^{184}W	5,01	63 Cu	0,13
		^{55}Mn	0,10	185 Re	5,95	⁶⁴ Ni,Zn	0,15
		56 Fe	21,14	$^{186}W,Os$	4,77	^{182}W	18,29
		57 Fe	0,15	203 Tl	0,15	^{183}W	10,44
		⁵⁸ Fe,Ni	0,91	206 Pb	0,15	^{184}W	21,36
		⁶⁰ Ni	0,37	$^{207}\mathrm{Pb}$	0,15	$^{186}W,Os$	20,90
		^{63}Cu	0,14	$^{208}\mathrm{Pb}$	0,40	198 Hg	0,17
				200 Hg	0,20	U	,
				202 Hg	0,18		
				$^{208}\mathrm{Pb}$	$0,\!15$		

Так же, как в реакторах Проток 6 и BB3, в пространстве между внутренней и наружной трубками появилось много вольфрама. Помимо вольфрама, здесь накопилось много железа, натрия, калия, никеля, кремния, кальция, скандия и ряда других элементов.

Сравнивая топливо до и после работы в реакторе, можно заметить снижение содержания натрия, калия и железа. Обращает на себя внимание появление значительного количества меди.

Очень много вольфрама и рения появилось в керамической трубке, обвитой нагревателем, в которой находилось топливо. В таблице VII представлены нуклиды, относительное содержание которых в керамической трубке возросло более чем в 10 раз.

Видно, что помимо вольфрама и рения, появление которых можно объяснить миграцией из спирали нагревателя, в керамической трубке сильно возросло содержание бора, в также нуклидов с атомными массами 43-53, 64-83, 107-130, 198-208.

В таблице VIII показаны результаты анализа соотношения изотопов никеля в топливе, а также в окружавшей топливо керамике и в веществе, накопившемся между внутренней и наружной трубками, до и после работы реактора. При анализе изотопного состава, во избежание ошибок, связанных с регистрацией ⁶⁴Zn, для доли ⁶⁴Ni было принято значение из справочника [7].

Видно, что изотопный состав никеля в топливе до и после работы в реакторе практически не изменился. Некоторые отличия заметны в результатах, полученных для керамической трубки и вещества между трубками. Но эти результаты нельзя считать точными, так как концентрация никеля в исследованных образцах недостаточно высокая для уверенного анализа.

Помимо ГЕОХИ РАН, анализ топлива до и после работы в реакторе, а также вещества из пространства — между внутренней и внешней трубками сделан в исследовательской компании Coolescence LLC, Boulder, - Colorado, USA. Были сделаны EDS анализы с испольи зованием электронного сканирующего микроскопа, а так же анализы с использованием методики ICP-MS. Эти исследования подтвердили незначительность изменения изотопного состава топлива, появление в топливе порядка 1% меди и наличие множества нуклидов в веществе из пространства между трубками.

VI. ОБСУЖДЕНИЕ

Итак, значительное изменение нуклидного состава в результате работы исследованных никель-водородных реакторов происходит не только в топливе, но и в керамике, окружающей активную зону реактора. Кроме того, в полости между внутренней и наружными трубками накапливается вещество, содержащее натрий, калий, кремний, железо, бор, кальций, цинк и множество других элементов. Особенно много появляется вольфрама. Разумно предположить, что источником вольфрама является раскаленная до высокой - температуры спираль нагревателя. Наиболее понятным механизмом миграции вещества является испарение в местах с высокой температурой и конденсация в менее нагретых местах. Как показывают измерения, температура провода нагревателя достигает 1700°С. Но даже при такой температуре плотность паров вольфрама (<10⁻¹⁰ Па) слишком низкая для того, чтобы этот механизм мог работать с заметной интенсивностью. Очевидно, происходят более сложные физико-химические процессы при участии водорода и иных реагентов, которые могут находиться в реакторе. Возможно, что и ряд других элементов появляется в результате миграции из конструкционных материалов,

Таблица VII Относительное содержание нуклидов (атомные %) в керамической трубке до и после работы реактора KB3. Показаны нуклиды, содержание которых возросло более чем в 10 раз.

	До	После	После/до
^{10}B	0,0008	0,0318	41,8
^{11}B	0,0054	0,1277	23,4
²⁹ Si	0,3709	4,2603	11,5
43 Ca	0,0158	0,2638	16,7
^{44}Ca	0,2123	3,1461	14,8
^{45}Sc	0,0507	2,0384	40,2
⁴⁶ Ti,Ca	0,0074	0,0836	11.3
^{51}V	0.0028	0.2151	78.0
$^{53}\mathrm{Cr}$	0.0057	0.0753	13.3
⁶⁴ Ni.Zn	0.0186	0.2224	12.0
⁶⁶ Zn	0.0099	0.1102	11.1
⁶⁷ Zn	0.0014	0.0211	15.0
⁶⁸ Zn	0.0080	0.0808	10.1
72 Ge	0,0001	0.0037	27.2
75 As	0,0001	0.0138	102.2
⁷⁶ Ge Se	0.0115	0,0100	17.2
77 Se	0,0001	0,1070	82.2
78 Se Kr	0,0001	0.0542	10.7
79Br	0,0028	0,0542	20.3
⁸¹ Br	0,0020	0,0300	10.6
83 Kr	0,0040	0,0790	13,0 13.7
107 A g	0,0001	0,0003	13,7
109 A g	0,0007	0,0805	14.3
113 Cd In	0,0071	0,1020	14,5
114Cd Sp	0,0001	0,0009	13,7
116 Cd Sn	0,0003	0,0004	11,9
117 Sn	0,0022	0,0275	12,0
118 cm	0,0011	0,0129	12,0
119 C.	0,0024	0,0422	17,9
120 Cu Tu	0,0014	0,0165	11,7
119g	0,0034	0,0670	19,5
¹¹⁰ Sn 122 m	0,0014	0,0165	11,7
122 le	0,0007	0,0101	15,0
12° I	0,0062	0,1589	25,7
¹²⁰ 1e	0,0002	0,0046	22,8
130 T	0,0008	0,0092	11,4
180 Te	0,0006	0,0101	16,7
182 W	0,0076	4,3168	567,8
185 W	0,0035	2,3489	671,7
185 D	0,0076	5,0087	658,8
¹⁰⁵ Re	0,0006	5,9469	9827,0
¹⁰⁰ W,Os	0,0089	4,7748	537,6
¹⁹⁰ Hg	0,0001	0,0321	238,5
¹⁹⁹ Hg	0,0007	0,0248	33,5
²⁰⁰ Hg	0,0004	0,0560	138,9
²⁰² Hg	0,0005	0,0606	128,8
²⁰³ Tl	0,0015	0,1498	101,2
²⁰⁴ Pb,Hg	0,0010	0,0101	10,0

Таблица VIII Соотношение изотопов никеля в топливе и около активной зоны реактора KB3 до и после работы реактора.

%	⁵⁸ Ni	60 Ni	⁶¹ Ni	62 Ni	64 Ni
Топливо	65,93	27,98	1,19	$3,\!98$	0,91
исходное					
Отработавшее	65,74	28,17	1,20	3,98	0,91
топливо					
Вещество	$66,\!66$	27,33	1,30	3,79	0,91
между					
трубками					
Керамика	$67,\!65$	27, 37	0,82	3,26	0,91
Природа	68,27	$26,\!10$	$1,\!13$	$3,\!59$	0,91

так как натрий, калий, кремний, кальций, железо и ряд других элементов содержатся в заметных количествах в проводе нагревателя, термопарах и в керамике. Но некоторых элементов (кобальт, церий, галлий, германий, мышьяк, селен, кадмий, теллур), появившихся в значительных количествах, в исходном топливе и конструктивных материалах практически нет. Это указывает на возможность их появления в результате ядерных трансмутаций. Например, церий может быть продуктом деления ядер вольфрама

$$^{182}W \rightarrow^{140}Ce + ^{42}Ca + 4e + 76,04 M \Rightarrow B$$
 (3)

Обращает на себя внимание появление значительного количества меди в топливе реактора KB3 (0,84% $^{63}\mathrm{Cu}$ и 0,42% $^{65}\mathrm{Cu}$) общей массой около 20 мг. Можно предположить, что это связано с протеканием ядерных реакций

$${}^{62}Ni + {}^{1}H \rightarrow {}^{63}Cu + 6,125$$
MəB
 ${}^{64}Ni + {}^{1}H \rightarrow {}^{65}Cu + 7,450$ MəB (4)

При образовании 20 мг меди в результате протекания реакций (4) выделяется около 200 МДж. Такое энерговыделение не противоречит общему избыточному тепловыделению на реакторе KB3 (около 400 МДж). Помимо выделения тепла, появление такого количества меди должно вызвать снижение относительного содержания ⁶²Ni на 0,8% и ⁶⁴Ni на 0,4%. Данные, представленные в таблице 6, не показывают таких изменений. Следует заметить, что прогнозируемые изменения лежит в пределах возможной опшобки измерений, а содержание ⁶⁴Ni вообще трудно надежно измерить из-за неконтролируемых добавок ⁶⁴Zn.

VII. Заключение

1. Проведен анализ изотопного и элементного состава вещества в четырех никель-водородных реакторах различной конструкции с наработкой избыточной энергии от 100 до 790 МДж. Исследованы не только изменения в топливе, но и материалах, прилегающих к активной зоне. Кроме того, исследован состав вещества, накапливающегося в полости реактора вблизи активной зоны.

2. Достоверных изменений изотопного состава никеля и лития, за исключением анализа топлива реактора АП2 в университете Uppsala (Швеция), не обнаружено.

3. Значительное возрастание концентрации примесей целого ряда нуклидов обнаружено не только в топливе, но и в конструкционных элементах, примыкающих к активным зонам реакторов. Помимо вольфрама и рения, появление которых можно объяснить миграцией из спирали нагревателя, в них сильно возрастает содержание бора, в также нуклидов с атомными массами 43-53, 64-83, 107-130, 198-208. 4. В веществе, накопившемся в полости реактора вблизи активной зоны, помимо вольфрама, присутствует много железа, натрия, калия, никеля, кремния, кальция, скандия и других элементов.

Список литературы

- [1] G. Levi, E. Foschi, B. Höistad, R.Pettersson, L. Tegnér, H.Essén. Observation of abundant heat production from a reactor device and of isotopic changes in the fuel. http://www.sifferkoll.se/sifferkoll/wpcontent/uploads/2014/10/LuganoReportSubmit.pdf.
- [2] А.Г. Пархомов. Отчет международной комиссии об испытании высокотемпературного теплогенератора Росси. *ЖФНН*, 2(6):57–61, 2014. http://www.unconvscience.org/pdf/6/parkhomov2-ru.pdf.
- [3] А.Г. Пархомов. Никель-водородные реакторы, созданные после публикации отчета об эксперименте в Лугано. *ЖФНН*, 4(11):58–62, 2016. http://www.unconvscience.org/pdf/11/parkhomov-ru.pdf.
- [4] Алабин К.А., Андреев С.Н., Пархомов А.Γ. Результаты анализа изотопного и элементного состава топлива никель-водородных реакторов. *ЖФНН*, 3(10):49–53, 2015. http://www.unconv-science.org/pdf/10/alabin-ru.pdf.
- [5] Пархомов А.Г. Результаты испытаний нового варианта аналога высокотемпературного теплогенератора Росси. $\mathcal{K}\Phi HH$, 3(8):34–38, 2015. http://www.unconvscience.org/pdf/8/parkhomov-ru.pdf.
- [6] Пархомов А.Г. Длительные испытания никельводородных теплогенераторов в проточном калориметре. $\mathcal{K}\Phi HH$, 4(12-13):74–79, 2016. http://www.unconv-science.org/pdf/12/parkhomov-ru.pdf.
- [7] Физические величины. Справочник. Под редакцией Григорьева И.С. и Мейлихова Е.З. Энергоатомиздат, М., 1991. 1232 с.